
112 I E E E  S O F T W A R E M a y / J u n e  2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0  ©  2 0 0 1  I E E E

T
his month’s column is simply a collec-
tion of what I consider to be facts—
truths, if you will—about software en-
gineering. I’m presenting this software
engineering laundry list because far
too many people who call themselves

software engineers, or computer
scientists, or programmers, or
whatever nom du jour you prefer,
either aren’t familiar with these
facts or have forgotten them.

I don’t expect you to agree with
all these facts; some of them might
even upset you. Great! Then we
can begin a dialog about which
facts really are facts and which are
merely figments of my vivid loyal
opposition imagination!

Enough preliminaries. Here are the most
frequently forgotten fundamental facts about
software engineering. Some are of vital im-
portance—we forget them at considerable
risk.

Complexity
C1. For every 10-percent increase in prob-

lem complexity, there is a 100-percent in-
crease in the software solution’s complexity.
That’s not a condition to try to change (even
though reducing complexity is always desir-
able); that’s just the way it is. (For one ex-
planation of why this is so, see RD2 in the
section “Requirements and design.”)

People
P1. The most important factor in attack-

ing complexity is not the tools and tech-
niques that programmers use but rather the
quality of the programmers themselves.

P2. Good programmers are up to 30 times
better than mediocre programmers, accord-
ing to “individual differences” research. Given
that their pay is never commensurate, they
are the biggest bargains in the software field.

Tools and techniques
T1. Most software tool and technique im-

provements account for about a 5- to 30-per-
cent increase in productivity and quality. But
at one time or another, most of these improve-
ments have been claimed by someone to have
“order of magnitude” (factor of 10) benefits.
Hype is the plague on the house of software.

T2. Learning a new tool or technique ac-
tually lowers programmer productivity and
product quality initially. You achieve the
eventual benefit only after overcoming this
learning curve.

T3. Therefore, adopting new tools and
techniques is worthwhile, but only if you (a)
realistically view their value and (b) use pa-
tience in measuring their benefits.

Quality
Q1. Quality is a collection of attributes.

Various people define those attributes differ-

loyal opposition

Frequently Forgotten 
Fundamental Facts about
Software Engineering
Robert L. Glass

E d i t o r :  R o b e r t  L .  G l a s s  ■ C o m p u t i n g  T r e n d s  ■ r g l a s s @ i n d i a n a . e d u

Continued on p. 110



110 I E E E  S O F T W A R E M a y / J u n e  2 0 0 1

LOYAL OPPOSITION

ently, but a commonly accepted col-
lection is portability, reliability, effi-
ciency, human engineering, testability,
understandability, and modifiability.

Q2. Quality is not the same as sat-
isfying users, meeting requirements,
or meeting cost and schedule targets.
However, all these things have an in-
teresting relationship: User satisfac-
tion = quality product + meets re-
quirements + delivered when needed
+ appropriate cost.

Q3. Because quality is not simply
reliability, it is about much more
than software defects.

Q4. Trying to improve one quality
attribute often degrades another. For
example, attempts to improve effi-
ciency often degrade modifiability.

Reliability
RE1. Error detection and removal

accounts for roughly 40 percent of de-
velopment costs. Thus it is the most
important phase of the development
life cycle.

RE2. There are certain kinds of
software errors that most program-
mers make frequently. These include
off-by-one indexing, definition or
reference inconsistency, and omitting
deep design details. That is why, for
example, N-version programming,
which attempts to create multiple 
diverse solutions through multiple
programmers, can never completely
achieve its promise.

RE3. Software that a typical pro-
grammer believes to be thoroughly
tested has often had only about 55 to
60 percent of its logic paths executed.
Automated support, such as coverage
analyzers, can raise that to roughly
85 to 90 percent. Testing at the 100-
percent level is nearly impossible.

RE4. Even if 100-percent test cov-
erage (see RE3) were possible, that
criteria would be insufficient for test-
ing. Roughly 35 percent of software
defects emerge from missing logic
paths, and another 40 percent are
from the execution of a unique com-
bination of logic paths. They will not
be caught by 100-percent coverage
(100-percent coverage can, therefore,

potentially detect only about 25 per-
cent of the errors!).

RE5. There is no single best ap-
proach to software error removal. A
combination of several approaches,
such as inspections and several kinds
of testing and fault tolerance, is 
necessary.

RE6. (corollary to RE5) Software
will always contain residual defects,
after even the most rigorous error re-
moval. The goal is to minimize the
number and especially the severity of
those defects.

Efficiency
EF1. Efficiency is more often a

matter of good design than of good
coding. So, if a project requires effi-
ciency, efficiency must be considered
early in the life cycle.

EF2. High-order language (HOL)
code, with appropriate compiler op-
timizations, can be made about 90
percent as efficient as the comparable
assembler code. But that statement is
highly task dependent; some tasks
are much harder than others to code
efficiently in HOL.

EF3. There are trade-offs between
size and time optimization. Often,
improving one degrades the other.

Maintenance
M1. Quality and maintenance

have an interesting relationship (see
Q3 and Q4).

M2. Maintenance typically con-
sumes about 40 to 80 percent (60
percent average) of software costs.
Therefore, it is probably the most im-
portant life cycle phase.

M3. Enhancement is responsible

for roughly 60 percent of software
maintenance costs. Error correction
is roughly 17 percent. So, software
maintenance is largely about adding
new capability to old software, not
about fixing it.

M4. The previous two facts con-
stitute what you could call the
“60/60” rule of software.

M5. Most software development
tasks and software maintenance tasks
are the same—except for the addi-
tional maintenance task of “under-
standing the existing product.” This
task is the dominant maintenance ac-
tivity, consuming roughly 30 percent
of maintenance time. So, you could
claim that maintenance is more diffi-
cult than development.

Requirements and design
RD1. One of the two most com-

mon causes of runaway projects is
unstable requirements. (For the other,
see ES1.)

RD2. When a project moves from
requirements to design, the solution
process’s complexity causes an explo-
sion of “derived requirements.” The
list of requirements for the design
phase is often 50 times longer than
the list of original requirements.

RD3. This requirements explosion
is partly why it is difficult to imple-
ment requirements traceability (trac-
ing the original requirements through
the artifacts of the succeeding life-
cycle phases), even though everyone
agrees this is desirable.

RD4. A software problem seldom
has one best design solution. (Bill
Curtis has said that in a room full
of expert software designers, if any
two agree, that’s a majority!) That’s
why, for example, trying to provide
reusable design solutions has so long
resisted significant progress.

Reviews and inspections
RI1. Rigorous reviews commonly

remove up to 90 percent of errors
from a software product before the
first test case is run. (Many research
findings support this; of course, it’s
extremely difficult to know when
you’ve found 100 percent of a soft-
ware product’s errors!)

Trying to improve 
one quality attribute

often degrades 
another. For example,
attempts to improve

efficiency often 
degrade modifiability.

Continued from p. 112



M a y / J u n e  2 0 0 1 I E E E  S O F T W A R E 111

LOYAL OPPOSITION

RI2. Rigorous reviews are more
effective, and more cost effective,
than any other error-removal strat-
egy, including testing. But they can-
not and should not replace testing
(see RE5).

RI3. Rigorous reviews are ex-
tremely challenging to do well, and
most organizations do not do them,
at least not for 100 percent of their
software artifacts.

RI4. Post-delivery reviews are gen-
erally acknowledged to be important,
both for determining customer satis-
faction and for process improvement,
but most organizations do not per-
form them. By the time such reviews
should be held (three to 12 months
after delivery), potential review par-
ticipants have generally scattered to
other projects.

Reuse
REU1. Reuse-in-the-small (libraries

of subroutines) began nearly 50 years
ago and is a well-solved problem.

REU2. Reuse-in-the-large (compo-
nents) remains largely unsolved, even
though everyone agrees it is impor-
tant and desirable.

REU3. Disagreement exists about
why reuse-in-the-large is unsolved, al-
though most agree that it is a man-
agement, not technology, problem
(will, not skill). (Others say that find-
ing sufficiently common subproblems
across programming tasks is difficult.
This would make reuse-in-the-large a
problem inherent in the nature of
software and the problems it solves,
and thus relatively unsolvable).

REU4. Reuse-in-the-large works
best in families of related systems,
and thus is domain dependent. This
narrows its potential applicability.

REU5. Pattern reuse is one solu-
tion to the problems inherent in code
reuse.

Estimation
ES1. One of the two most com-

mon causes of runaway projects is
optimistic estimation. (For the other,
see RD1.)

ES2. Most software estimates are
performed at the beginning of the life
cycle. This makes sense until we realize

that this occurs before the require-
ments phase and thus before the prob-
lem is understood. Estimation there-
fore usually occurs at the wrong time.

ES3. Most software estimates are
made, according to several researchers,
by either upper management or mar-
keting, not by the people who will
build the software or by their man-
agers. Therefore, the wrong people are
doing estimation.

ES4. Software estimates are rarely
adjusted as the project proceeds. So,
those estimates done at the wrong
time by the wrong people are usually
not corrected.

ES5. Because estimates are so
faulty, there is little reason to be con-
cerned when software projects do

not meet cost or schedule targets. But
everyone is concerned anyway!

ES6. In one study of a project that
failed to meet its estimates, the man-
agement saw the project as a failure,
but the technical participants saw it
as the most successful project they

had ever worked on! This illustrates
the disconnect regarding the role of
estimation, and project success, be-
tween management and technolo-
gists. Given the previous facts, that is
hardly surprising.

ES7. Pressure to achieve estima-
tion targets is common and tends to
cause programmers to skip good soft-
ware process. This constitutes an ab-
surd result done for an absurd reason.

Research
RES1. Many software researchers

advocate rather than investigate. As
a result, (a) some advocated concepts
are worth less than their advocates
believe and (b) there is a shortage of
evaluative research to help determine
the actual value of new tools and
techniques.

T here, that’s my two cents’ worth of
software engineering fundamental
facts. What are yours? I expect, if

we can get a dialog going here, that
there are a lot of similar facts that I
have forgotten—or am not aware of.
I’m especially eager to hear what ad-
ditional facts you can contribute.

And, of course, I realize that some
will disagree (perhaps even violently!)
with some of the facts I’ve presented.
I want to hear about that as well.

Robert L. Glass is the editor of Elsevier’s Journal of
Systems and Software and the publisher and editor of The Soft-
ware Practitioner newsletter. Contact him at rglass@indiana.edu;
he’d be pleased to hear from you.

Pressure to achieve
estimation targets is
common and tends to

cause programmers to
skip good software

process. This constitutes
an absurd result done
for an absurd reason.

Copyright and reprint permission: Copyright © 2001 by the Institute of Electrical and Electronics Engi-
neers, Inc. All rights reserved. Abstracting is permitted with credit to the source. Libraries are permitted to
photocopy beyond the limits of US copyright law for private use of patrons those post-1977 articles that
carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through
the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. For copying, reprint, or re-
publication permission, write to Copyright and Permissions Dept., IEEE Publications Admin., 445 Hoes
Ln., Piscataway, NJ 08855-1331.

Circulation: IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer Society. IEEE
headquarters: Three Park Ave., 17th Floor, New York, NY 10016-5997. IEEE Computer Society Publications
Office: 10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-1314; (714) 821-8380; fax (714)
821-4010. IEEE Computer Society headquarters: 1730 Massachusetts Ave. NW, Washington, DC 20036-
1903. Subscription rates: IEEE Computer Society members get the lowest rates and choice of media option—
$40/32/52 US print/electronic/combination; go to http://computer.org/subscribe to order and for more infor-
mation on other subscription prices. Back issues: $10 for members, $20 for nonmembers. This magazine is
available on microfiche.

Postmaster: Send undelivered copies and address changes to Circulation Dept., IEEE Software, PO
Box 3014, Los Alamitos, CA 90720-1314. Periodicals Postage Paid at New York, NY, and at addi-
tional mailing offices. Canadian GST #125634188. Canada Post Publications Mail Product (Cana-
dian Distribution) Sales Agreement Number 0487805. Printed in the USA.


