
LED Scrolling Message Board

The messaging board interface allows a user to input and edit messages.

Internally the messaging board has been set up in such a way that an
action is initiated by a command string. These command strings are
represented by tags.

These are the tag combinations recognized by the messaging board’s interpreter. These
tags are embedded in the playlist(s) and message file(s).

##nn -: Start of a message - where nn is the message number
#. -: End of a message

##* -: Start of transmission [a message file group]
#. -: End of transmission [a message file group]

#?nn -: Start of a playlist - where nn is the playlist number
#: -: End of a playlist

##$ -: Start of transmission [a playlist file group]
#. -: End of transmission [a playlist file group]

#()nsc-: Start of a message stream - where nsc is as defined in EFFECTS
#()ntt-: Start of a message stream - where ntt is as defined in EFFECTS
#. -: End of message stream

\ -: Escape character

#. -: Stop/ end /terminate

#*nsc -: Effect tag (dynamic effects)

#*ntt -: Effect tag (static effects)

#@n -: Repeat tag - where n is repeat count

#$n -: Loop tag- where n is the loop count

#T -: display the time

#TA -: set/adjust the time

#Fn -: Select display font- where n is the font number

-: User defined /programmed message tag

#& -: Preloaded message tag

MESSAGE FILE

Any message must have a tag to mark its beginning and another to mark its end.

##nn -: ‘Start of a message’ tag - where nn is the message number
#. -: ‘End of a message’ tag
--

 E.g. ‘this is a sample message.’

If this is message ‘00’, then the tags embedded/generated with the message will be

 ##00this is a sample message.#.

a) ##00 marks the start of message 0. ##nn :- where nn is the message number.
Two digits to allow expansion (to 99 messages).

b) #. marks the end of the message.
 Note: The # comes after the full stop (in case a full stop is included in the
message) and no spaces are allowed between them. A space will be treated as being a
valid part of the message.

 ##00this is a sample message.#.
 ##01this is another sample message.#.
 ##02this is yet another sample message.#.

##* -: Start of transmission [a message file group]
#. -: End of transmission [a message file group]
--

To be correctly received, the messages transmitted must have transmission tags. The
display has a “gate keeper” task that looks out for these tags then routes the message to
the correct destination.

Note: Besides the transmission tags, the tags that mark the beginning and end of
messages must also be included.

The message files formatted for transmission should look like this

##*##00this is a sample message.#.##01this is another sample message.#.##02this is
yet another sample message.#.#.

a) The ##* before ##00 indicates the start of transmitted message file group.

b) The last #. at the end indicates the end of transmitted message file group.

Note: the messages can be transmitted individually or as a group(s) as long as a start
message transmission (##*) and a stop message transmission (.#) are included.

##*##00this is a sample message.#.#. is valid and can be transmitted.

And so is this

 ##*##00this is a sample message.#.##01this is another sample message.#.#.

NOTE: No effects, repeats or loops are included/allowed in the message files.
SEE: EFFECTS, REPEATS & LOOPS

ESCAPE CHARACTER

\ -: Escape character (used only in message files and message streams)

Format: xxx\ where xxx is a predefined character combination.

Used immediately after a predefined character combination to “escape” from the effect of
the combination.

Note: A message with “ #.” will prematurely terminate if the “ #.” were a valid part of the
message.

E.g. the message “ I intend to rob #. the bank ” will display as “ I intend to rob “ then
terminate. The reason for this is that the messaging board will interpret “ #.” as the end of
the message file and truncate the file.

To display correctly included an escape character “ \ ” to be inserted immediately after
the predefined character combination (no spaces).

“ I intend to rob #.\ the bank ” then displays correctly as “ I intend to rob #. the bank
”.
NOTE: To implement correctly you have to scan a message that the user has entered then
include the escape character whenever “ #.” is encountered.

PRE-LOADED MESSAGES

#&nn -: Preloaded/canned message tag

Format: #&nn where nn is the message number

Messages preprogrammed into the messaging board are

#&00 Preloaded Message 0 - ‘HAVE A NICE DAY.'
#&01 Preloaded Message 1 - ‘WELCOME. WE ARE OPEN
#&02 Preloaded Message 2 - ‘GREAT OFFERS TODAY.
#&03 Preloaded Message 3 - ‘NO SMOKING PLEASE.
#&04 Preloaded Message 4 – ‘THANK GOD ITS FRIDAY.
#&05 Preloaded Message 5 - ‘HAPPY EASTER '
#&06 Preloaded Message 6 - ‘MERRY CHRISTMAS.'
#&07 Preloaded Message 7 - ‘HAPPY NEW YEAR’
#&08 Preloaded Message 8 - ‘ITS SHOW TIME’

Preloaded messages are a part of the display’s firmware and can be altered on request.

USER DEFINED MESSAGES

-: User defined /programmed message tag

Format: ##nn where nn is the message number

A user enters a message in the user interface and the relevant tags are attached to the
message before being sent to the display board.
 Details are as defined in MESSAGE FILE.

STOP

#. -: Stop/ end / terminate

Format: #.
Marks the end of a message file.

It also marks the “beginning” of a loop.
Normally a “stop” marks the end. In the loop implementation, the logic is reversed.
[More details on this in LOOPS]

CONFIGURATION COMMANDS (EFFECTS AND FONT
SELECTION)

EFFECTS

#* -: Effect tag

There are dynamic effects (motion is involved e.g. scroll left, scroll right, etc) and static
effects (e.g. ‘hang’ a stationary message for time xx seconds).

Dynamic effects format: #*nsc

 n (one byte) - effect number /identity
 s (one byte) - effect speed (how fast the effect should run
. e.g. a left scroll can scroll slowly or the speed can be increased to make it scroll faster)
 c (one byte) - effect count (number of motions the effect makes)
 note: effect count has nothing to do with repeats

NOTE: There are 8 allowable speeds (from 0 to 7).
 : Default effect is 1.
 : Default speed is 4.
 : Default count is 1 except for effects 1 & 2 where it is the ASCII ’E’ and effect
0 where it does not apply.

Static effects format: #*ntt

 n (one byte) - effect number /identity
 tt (two bytes) - effect timing (length of time the effect should run before it
is timed-out)
 – if the effect is to run for 25 seconds then 2 will be regarded as the high
byte and 5 the low byte

E.g. 1 #*13E#&01#*25E#&03

 Split it up for clarity #*13E #&01 #*25E #&03

On executing, will load effect 1 running at speed 3 (#*13E). The effect will be performed
on preloaded message 1 (#&01).

Then effect 2 running at speed 5 will be performed on preloaded message 3(#&03),
(#*25E).

E.g. 2 #*14E#&01#*015#&03

 Split up #*14E #&01 #*015 #&03

On executing, will load effect 1 running at speed 4 (#*14E). This will be performed on
preloaded message 1 (#&01).

Then effects 0 (this is a static effect) on message 3(#&03) will timeout after 15 seconds.

Like the preloaded messages, a user can choose effects.

A suggestion: you could have a pull down menu where you can enter effect parameters.
Or you could have columns where the appropriate action and parameters are entered.
(Your choice)

Effects available

Effect 0 (Static) c- blink (message blinks while stationary for time xx seconds then
exits by scrolling left)

Effect 1 (Dynamic) s- scroll left
Effect 2 (Dynamic) s- scroll right
Effect 3 (Dynamic) c- Left-Right bounce (oscillates between a scroll left and a scroll
right)

Effect 4 (Dynamic) c- "left-shift-in"
Effect 5 (Dynamic) c- rotate/ scroll down
Effect 6 (Dynamic) c- wipe in – invert - wipe out

Effects can also be categorized as
1) s (simple) : is an effect that performs one basic motion or transformation.
2) c (compound): is an effects that is a combination of more than one simple

effect.

On executing a ‘simple effect + message’ command, the last effect
command remains active. If the same effect is to be performed on the
next message, the message can be called without explicitly
mentioning the effect.

Example

 #*14E #&01 #*14E #&02

Effect 1 is a simple effect (scroll left)

On executing, will scroll left (Effect 1) at speed 4 (#*14E). This will be performed on
preloaded message 1 (#&01) and then the same will happen to message 2 (#&02).

This combination #*14E #&01 #&02 executes in exactly the same way as

 #*14E #&01 #*14E #&02

NOTE: this only happens when you are dealing with simple effects.
The reason for this is that a compound effect calls one simple effect/motion after
another. On exiting the last simple effect/motion is left active. This last active effect acts
on the next message unless another effect is explicitly called.

Example

#*342 #&01 #*342 #&02

Effect 3 is a compound effect (Left-Right bounce): - oscillates between a scroll left and a
scroll right. On executing will run a simple scroll left then a simple scroll right and
repeat based on the count. Given an odd count Left-Right bounce exits on a simple
scroll left and given an even count it exits on a simple scroll right.

#*342 #&01 #*342 #&02

On executing, will load effect 3 running at speed 4 (#*342). This will be performed on
preloaded message 1 (#&01), twice and then the same will happen to message 2 (#&02).

This combination #*342 #&01 #&02 does not executes the same way as

 #*342 #&01 #*342 #&02

When generating ‘simple effect + message’ combinations you could use either
formats (whichever makes coding easier).

sample effect tags

#*015 (Effect 0) message blinks while stationary for 15 seconds then exit
#*14E (Effect 1) scroll left at speed 4 then exit
#*26E (Effect 2) scroll right at speed 6 then exit
#*342 (Effect 3) oscillate between a scroll left and a scroll right at speed 2 (twice).
#*442 (Effect 4) scroll down at speed 4, 2 rolls then exit
#*541 (Effect 5) "left-shift-in" at speed 4 then exit
#*672 (Effect 6) wipe in- invert - wipe out at speed 7, 2 wipes then exit.

The number may increase later.

FONT SELECTION .

Format: #Fn -: Select display font- where n is the font number

Action: When the tag is encountered all messages after the tag will be converted to the
selected font till the next font change tag is encountered.

You can drop it into the playlist before “effect details”+ “ message details” combination.

Available fonts are

NORMAL_FONT_SIZE
SMALL_LOWERCASE
BLOCK_UPPERCASE
WIDE_BLOCK_UPPERCASE

The GUI replaces them in the background with the appropriate tags. (#F0, #F1, F2, #F3)

NORMAL_FONTSIZE = #F0
SMALL_LOWERCASE = #F1
BLOCK_UPPERCASE = #F2
WIDE_BLOCK_UPPERCASE = #F3

Default font is ‘0’

FLOW CONTROL COMMANDS (REPEATS AND LOOPS)

REPEAT

#@ -: Repeat tag

Format: #@n

Repeats the “ effect + last message ” n times.

Example 1

 ……..#*14E#&03…… #*14E #&03
Interpreted as effect 1 at speed 4 on prerecorded message 3. This runs then moves on to
the next operation.

 Example 2

 ……..#*14E#&03#@5 …… #*14E #&03 #@5
 Interpreted as run effects 1 at speed 4 on user-defined message 3 then repeat 5 times
before moving to the next operation.

LOOP

#$n -: Loop tag

Format: #$n

A loop instruction (#$n) runs everything between it and the last stop (#.) encountered
earlier.

On execution, a loop instruction causes the interpreter to reverse to the last stop (#.), and
then acts on all messages and effects after the stop. If a looping were to be done between
‘effects X_1 + messages’ and ‘effects X_n +messages’ no stop (#.) should be included
between them.

As seen earlier, any new effect and message can be called without ‘STOP’ing the
previous one. In this scenario the previous effect and message is enqueued. A 'LOOP'
instruction runs enqueued messages and effects.

The difference between a loop and a repeat is the “operand” range.

A repeat acts only on the last ‘effect + message’. Looping operand range extends till the
last stop.

Nested loops are supported. (A loop inside a loop)

Example 1

 ……..#*14E#&03#.#*355#&03…… #*14E #&03 #. #*355 #&03

The stop between #&03 and #*355 terminates and resets everything that had
happened earlier. In this case #*355 #&03 remains enqueued.

Example 2

 ……..#*14E#&3#*355#&3…… #*14E #&03 #*355 #&03

After running, #*14E #&03 #*355 #&03 remain enqueued till the next stop is
encountered.

Example 3

#*25E#&1#*25E#&2#.#*121#&6##4#&4##3#$2

Split up #*25E #&1 #*25E #&2 #. #*121 #&6 ##4 #&4 ##3 #$2

Step 1:On executing, will load effect 2 running at speed 5 (#*253). This will perform the
effect on preloaded message 1 and on message 2 then stop (#.).

Step 2:Next will load effect 1 running at speed 2 (#*12). This will perform the effect on
preloaded message 6,user defined message4, preloaded message 4, user-defined
message3.

 Step 3: (A loop instruction is encountered). The interpreter will reverse to the last stop #.
and repeat everything after the stop (Step 2). All these [#*12 #&6 ## 4 #&4 ##3]

Implementation.

1) Call a stop
2) Place all the stuff in the loop,
3) Call a loop (and number of times to loop)

……. #._all_the_stuff_in_the_loop_#$n……… no spaces.

(A suggestion: in your GUI there could be a provision to select a loop.
 A user can check/tick where he wants the loop to start and where he wants it to end.
Your tag generator can then insert

1) A stop before a check/tick where loop starts
2) A loop tag after a check/tick where loop ends.

PLAYLIST FILE

A playlist is a list of message files (file tags represent the message files) and commands
on what to do with the files. There are configuration commands (effects, font selection,
playlist timing and delimiters) and flow control commands (repeats and loops).

The playlist is read by an interpreter that tries to do as the playlist says. Without flow
control, it performs a simple playlist read from beginning to end. Repeats and/or loops
alter read flow.

Before a message file is read, the reader has to be configured (either explicitly or as
implied in the definitions). The message reader has to know how to read (from right to
left or from left to right and the expected character font).

A playlist in its basic form is something like this

 “Start of a playlist “ “effect details”+ “message details” “effect details”+ “message
details” “effect details”+ “message details” “End of a playlist”

#?nn -: Start of a playlist - where nn is the playlist number
#: -: End of a playlist
--

 This is a sample playlist. #*132#&01#*13E#&02 . For clarity this will be represented as
‘ _ playlist _detail_’ .

If this is playlist ‘02’, then the tags generated with the playlist will be

 #?02CACACACA_ playlist _detail_#:

b) #?02 marks the start of playlist ‘02’. #?nn - where nn is the playlist number.
 Two digits to allow future expansion (up to 99 playlist).

c) ‘CACACACA’ is the playlist timing info. When a start time and stop time are
not set by the user the default tag will be CACACACA (8 bytes).

 For timing purposes, I use a 24HR format.
 If start time is 09.30AM and timeout is 10.45AM then time tag will be 09301045
(8 bytes).
 If start time is 02.30pm(14.30hrs) and timeout is 04.15pm(16.15hrs) then time
tag will be 14301615 (8 bytes).

d) #: marks the end of playlist.

This is another sample playlist. #*253#&1#.#*123#&6#@2
It is set to start at 10:45am and timeout at 11:30 am

If this is playlist ‘05’, then the tags generated with the playlist will be
#?0510451130_ playlist _detail_#: (for clarity) or

#?0510451130#*253#&1#.#*123#&6#@2#: .
.

a) #?05 marks the start of playlist ‘2’. #?nn - where nn is the playlist number
b) #: marks the end of the playlist.
c) 10451130 is the playlist timing info.

Playlist examples

Playlist 0 #?00CACACACA_ playlist _detail_#:
Playlist 3 #?0310451130_ playlist _detail_#:
Playlist 5 #?0510001210_ playlist _detail_#:

##$ -: Start of transmission [a playlist file group]
#. -: End of transmission [a playlist file group]
--

Note 1: These tags are used during file transmission to mark the start of a transmitted
playlist file
Note 2: Playlist can be transmitted individually or as a group(s) as long as a start
playlist transmission (##$) and a stop playlist transmission (.#) are included.

Example 1
 If playlist ‘00’ is to be transmitted alone, then it will be formatted as shown below.

##$#?00CACACACA_ playlist_detail_#:#.

Example 2
Playlist ‘00’ and Playlist ‘03’ (On transmission)

##$#?00CACACACA_ playlist_detail_#:#?0310451130_playlist_detail_#:#.

Example 3
Playlist ‘00’, Playlist ‘03’ and Playlist ‘05’ (On transmission)

##$#?00CACACACA_ playlist _detail_#:#?0310451130_ playlist _detail_#:#?
0510001210_ playlist _detail_#:#.

 All the files above are valid for transmission.
Note: no spaces between sequences or start/ terminating characters

REMEMBER: ‘effect + message’ tag combination cannot have anything between
them.
Repeats, loops, “show time” or “font selection” tags are place either before or after
them.

#T -: display time

Format: #Tss

Displays the time for a period of ss seconds. The instruction can be included in a playlist
so that as the playlist is running it displays the time when the tag comes up.

Time can also be displayed in streaming mode.

Format: #()ntt#Tss#. Note the time is read from the messaging board’s clock. The
format is as defined in MESSAGE STREAM

Format: #()ntt12:30#. Note the time value is generated elsewhere then sent as data to
the messaging board. The format is as defined in MESSAGE STREAM

On the messaging board all playlist are sorted by starting time. In case a Playlist file
doesn’t have a time tag then it will be sorted by Playlist number.

Note:
In case two sequences have overlapping times then the one with an earlier starting time
gets to run first. When the next sequence’s starting time comes up, the running sequence
will be terminated. Starting time will always override stopping time.

Example 1
Sequence 1 10.30 to 12.30
Sequence 2 10.32 to 12.30

Sequence 1 will run from 10.30 to 10.32, then sequence 2 from 10.32 to 12.30

Example 2
Sequence 1 10:30 to 12:55
Sequence 2 12:00 to 12:05

In this scenario, Sequence 1 runs from 10:30 to 12:00 then sequence 2 runs from 12:00
to 12:05 .

Example 3
Sequence 1 10:30 to 12:00
Sequence 2 10:30 to 12:30

In the third scenario, Sequence 1 never gets to run.

	LED Scrolling Message Board
	MESSAGE FILE
	SEE: EFFECTS, REPEATS & LOOPS

	ESCAPE CHARACTER
	PRE-LOADED MESSAGES
	USER DEFINED MESSAGES
	STOP
	EFFECTS
	Effects available
	sample effect tags
	REPEAT
	Example 1
	LOOP
	Example 1
	The stop between #&03 and #*355 terminates and resets everything that had happened earlier. In this case #*355 #&03 remains enqueued.
	Example 2
	After running, #*14E #&03 #*355 #&03 remain enqueued till the next stop is encountered.
	Example 3
	PLAYLIST FILE
	Playlist examples
	Example 1
	Example 2
	Example 3
	Example 1
	Example 2

	Example 3

